2 research outputs found

    Self-healing Multi-Cloud Application Modelling

    Get PDF
    Cloud computing market forecasts and technology trends confirm that Cloud is an IT disrupting phenomena and that the number of companies with multi-cloud strategy is continuously growing. Cost optimization and increased competitiveness of companies that exploit multi-cloud will only be possible when they are able to leverage multiple cloud offerings, while mastering both the complexity of multiple cloud provider management and the protection against the higher exposure to attacks that multi-cloud brings. This paper presents the MUSA Security modelling language for multi-cloud applications which is based on the Cloud Application Modelling and Execution Language (CAMEL) to overcome the lack of expressiveness of state-of-the-art modelling languages towards easing: a) the automation of distributed deployment, b) the computation of composite Service Level Agreements (SLAs) that include security and privacy aspects, and c) the risk analysis and service match-making taking into account not only functionality and business aspects of the cloud services, but also security aspects. The paper includes the description of the MUSA Modeller as the Web tool supporting the modelling with the MUSA modelling language. The paper introduces also the MUSA SecDevOps framework in which the MUSA Modeller is integrated and with which the MUSA Modeller will be validated.The MUSA project leading to this paper has received funding from the European Union’s Horizon 2020 research and innovation pro- gramme under grant agreement No 644429

    Dynamic reconfiguration of cloud application architectures

    Full text link
    [EN] Service-based cloud applications are software systems that continuously evolve to satisfy new user requirements and technological changes. This kind of applications also require elasticity, scalability, and high availability, which means that deployment of new functionalities or architectural adaptations to fulfill service level agreements (SLAs) should be performed while the application is in execution. Dynamic architectural reconfiguration is essential to minimize system disruptions while new or modified services are being integrated into existing cloud applications. Thus, cloud applications should be developed following principles that support dynamic reconfiguration of services, and also tools to automate these reconfigurations at runtime are needed. This paper presents an extension of a model-driven method for dynamic and incremental architecture reconfiguration of cloud services that allows developers to specify new services as software increments, and the tool to generate the implementation code for the services integration logic and the deployment and architectural reconfiguration scripts specific to the cloud environment in which the service will be deployed (e.g., Microsoft Azure). We also report the results of a quasi-experiment that empirically validate our method. It was conducted to evaluate their perceived ease of use, perceived usefulness, and perceived intention to use. The results show that the participants perceive the method to be useful, and they also expressed their intention to use the method in the future. Although further experiments must be carried out to corroborate these results, the method has proven to be a promising architectural reconfiguration process for cloud applications in the context of agile and incremental development processes.This research is supported by the Value@Cloud project (MINECO TIN2013-46300-R), DIUC_XIV_2016_038 project, and the Microsoft Azure Research AwardZúñiga-Prieto, MÁ.; Gonzalez-Huerta, J.; Insfran, E.; Abrahao Gonzales, SM. (2018). Dynamic reconfiguration of cloud application architectures. Software Practice and Experience. 48(2):327-344. https://doi.org/10.1002/spe.2457S32734448
    corecore